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Abstract

Strain engineering can be utilized to tune the fundamental properties of semiconductor materials 

for applications in advanced electronic and photonic devices. Recently, the effects of large strain 

on the properties of nanostructures are being intensely investigated to further expand our insights 

into the physics and applications of such materials. In this letter, we present results on controllable 

buckled cadmium-sulfide (CdS) optical nanowires (NWs), which show extremely large energy 

bandgap tuning by >250 meV with applied strains within the elastic deformation limit. 

Polarization and spatially-resolved optical measurements reveal characteristics related to both 

compressive and tensile regimes, while micro-reflectance spectroscopy clearly demonstrate the 

effect of strain on the different types of excitons in CdS. Our results may enable strained NWs-

based optoelectronic devices with tunable optical responses.
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Strain-engineering offers attractive prospects for understanding and tuning the properties of 

materials and also for the design of next generation of devices with new functionalities 

[1-7]. Recently, many intriguing reports on strain-dependent electronic and optical 

properties of nanostructures, e.g. carbon nanotubes and nanowires (NWs), have been 

published [8-18], which are greatly expanding our understanding of these nanomaterials. 

Due to large surface-volume ratio and high crystal quality, nanostructures can withstand 

large strains without fracture and hence are more useful for flexible device applications [11, 

19]. More recently, opto-mechanical coupling in direct band-gap semiconductor NWs with 

strain has been reported with remarkable optical features including large emission energy 

shifts, fine exciton splitting, and size-dependent band-gap tuning [19-22]. Some of the 

techniques to produce strain in NWs have included using glass or probe tips [19-20] for 
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mechanically bending the wires and mounting the NWs on piezoelectric stages [21, 22]. 

These techniques, although impressive, are complex, require manipulation of one or few 

devices at a time and are limited to the maximum amount of stress that can be applied to the 

nanostructures. Elastomeric substrates have paved a new way for developing stretchable/

bendable electronics, such as, paper-like displays, flexible transistors and diodes, and 

wearable sensors [23-26]. More interestingly, by using plastic substrates, deformed 

semiconductor thin-films, nanowires, and nanobelts have been obtained, which are favorable 

for fabricating high-performance flexible electronic devices [27-31].

Cadmium Sulfide (CdS), a semiconductor with a wurtzite structure and a direct electronic 

bandgap of ~2.46 eV at room temperature, has long been studied because of its potential 

applications in optoelectronic devices. CdS NWs or nanoribbons functioned as microcavity 

show remarkable optical and photonic properties such as increased light-matter coupling 

strengths, waveguides, photonic and plasmonic lasers, and optical switches [32-37]. In 

addition, the elastic modulus of CdS nanowire has been measured, which obtained values 

ranging from 95 GPa to 196 GPa (higher than that of bulk CdS, 62 GPa), depending on the 

diameter, surface and crystal quality of nanowires [38]. It would be interesting to study the 

effect of large strains on the optical and electronic properties of CdS NWs in order to further 

understand its properties under extreme conditions, which is likely to experience large 

strains for flexible electronics/photonics applications. Recently, by using a glass tip to 

manipulate the straight nanowires to a curved geometry, strain-induced redshift of 

cathdoluminescence peaks in CdS NW was reported [39]; however, the bandgap tuning 

range of CdS NW was quite small with 32 meV shift under a strain gradient of 0.7 cm-1. 

Furthermore, since the techniques for manipulating nanowires for optical measurements was 

limited by the amount of strain, the effect of strain on the properties of different types of 

excitons (A, B and C in CdS) could not be studied.

In this letter, we present the optical properties of buckled CdS NWs, which show a large 

tuning of the excitons states at large strains. By using micro-photoluminescence (μ-PL) 

spectroscopy, the periodic modulation of energy bandgap of CdS NW is demonstrated to be 

as large as 250 meV at εouter= 11% tensile strain. Moreover, we find the distinct polarization 

responses for compressive and tensile strained areas of buckled NWs and by using micro-

reflectance (μ-R) technique, we observed that the origin of distinct polarization properties 

mainly originate from the different strain-dependent responses of the A- and B-exciton 

energy shifts.

CdS NWs (grown along the c-axis) were grown via the vapor-liquid-solid method as 

reported elsewhere [40] and then transferred on pre-strained flexible substrates. Figure 1(a) 

shows schematically the procedure for obtaining in-plane buckled NWs on 

polydimethylsiloxane (PDMS) substrates. As-grown CdS NWs were first dry transferred 

from a silicon oxide substrate to a polyimide film. Subsequently, the NWs transferred on the 

polyimide film were carefully contacted at the center of pre-strained PDMS surface to 

ensure that the nanowires were subjected to uniform compressive strain. During the transfer 

to the PDMS substrate, the polyimide substrate was mechanically slid along the PDMS pre-

strain direction to ensure that most NWs were aligned and hence buckled in-plane after the 

release of tensile strain (Figure 1 (b-d)). The optical properties of buckled nanowires were 
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measured with a home-made μ-PL and μ-R system. Unless mentioned otherwise, all μ-PL 

and μ-R spectra were measured with nanowires at a temperature of 77 K to obtain the exact 

exciton energy positions (Supplementary Information: Experiments and methods).

Fig. 2(a) shows a bright field optical image of a typical buckled CdS nanowire with an in-

plane wavy geometry on a PDMS elastomeric substrate with the antinode (bent regions) 

positions marked by labels p1 to p9. The μ-PL spectral mapping data, consisting of more 

than 100 normalized spectra measured along the buckled nanowire long axis with a scanning 

excitation step of 0.8 μm from p1 to p9 (Fig. 2(b)) along with a corresponding waterfall plot 

(Fig. 2(c)) clearly shows that the exciton emission peak shifts periodically as the excitation 

laser moves from the node (straight regions) to the antinode positions. The regions from 

where the maximum redshifted spectra are obtained correspond exactly to the antinode 

positions labeled in Fig. 2(a), which are regions of highest strain. Furthermore, moving from 

p1 to p9, it can be observed that the curvature of the bent regions decreases gradually 

(especially from p4 – p9), which directly corresponds to the reduction in the observed 

spectral redshift, suggesting that the observed shifts directly correlate with the extent of 

strain in the nanowire.

The redshift of the exciton peak is mainly caused by the tensile strain εouter in the outer 

surface of curved nanowire, which can be roughly estimated by the local radius of curvature, 

ρ, and diameter, D, of nanowire (εouter = D/2ρ) [19,37]. With the decrease of curvature from 

p4 to p9, the measured exciton redshifts gradually reduced as shown in Figs. 2(b) and (d). 

Unlike the previously reported results observed for CdS and ZnO NWs where the observed 

redshift was small and limited by the techniques for straining the NWs, a huge redshift 

(~200 meV) of exciton emission peak is observed at the antinode part (p4, with εouter=~9%) 

of the wavy nanowire in our experiment. Measurements conducted on highly curved 

nanowires revealed redshifts as large as 250 meV (with strain εouter=~11%), and is amongst 

the highest ever reported for direct bandgap materials (see supporting information Fig. S-2). 

These results demonstrate clearly that the high quality CdS nanowires indeed possess very 

strong bendability. The spectral broadening at the curved part (Peak 2, Fig. 2(d)) may be 

attributed to the bending deformation-induced broadening of the gaps between different 

subbands in the conduction band [20] and also could be due to the inhomogeneous strain 

distribution both in the cross section and along the c-axis (growth axis) of the nanowire. 

Because of the large tensile strain, the redshifted Peak 2 (Fig. 2(d)) moves significantly to 

the low energy side of the spectrum with no overlap with Peak 1, which facilitated our study 

and analysis for these two peaks in the PL. It is interesting to note that as the excitation 

scanning laser moves from the node to the antinode position, the initial emission peak does 

not disappear completely but shows up as a much smaller peak (Peak 1) at the antinode (Fig. 

2(d)), which can be also observed at each antinode position in the PL mapping. We also 

present the PL spectrum of CdS NW without any strain (Fig. 2(d) top) for reference; both A- 

and B-exciton peaks are clearly observed, which imply that the CdS nanowires have high 

optical quality [40]. Compared with the PL spectra of a buckled nanowire, we can see that 

the emission peak (red curve) from the node region of the buckled nanowire shows some 

broadening and is slightly blueshifted (Fig. 2(d)). The optical properties and the underlying 

mechanisms of these emission peaks will be discussed in detail later.
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To demonstrate the deformation properties and controllability of strained nanowires on 

PDMS, we performed real-color emission imaging under different buckling curvatures at 

room temperature. A custom-built strain stage was used to control the curvature of the wavy 

nanowires, and a pair filters was place in the detection path of the microscopy set-up to help 

obtain emission-based images(see supporting information: experiments and methods 4 and 

Figure. S-1). Fig. 3(a) is a darkfield image of a typical wavy nanowire, and the 

corresponding real-color image is shown in Fig. 3(b), from where we can see clearly that the 

color of nanowire shows a periodic modulation from the nodes (blue color) to the antinode 

regions (green color). This behavior is consistent with the μ-PL mapping of the wavy 

nanowire (Fig. 2(b)), and can be understood by tensile strain-induced energy bandgap 

shrinking at the outer part of the antinode region. For the node regions, bandedge emission 

occurs at a wavelength ~500 nm (room temperature) which is quite close to the transmission 

raising edge of the 488 nm filters, the reflected and emitting light from the nanowire body 

would dominated the image of the NW, which appears blue. While for the antinode regions, 

the bandgap shrinking at the outer part would lead to the emission redshift to the 520 

nm-540 nm range and hence enters the transmission range of the long pass 488 nm-filters, 

making the image of these regions appear more green. By using a strain stage, we carried 

out the real-color imaging measurements of the wavy nanowire while gradually changing 

the curvature of the bent region. As shown in Fig. 3(c), buckled nanowire on PDMS can be 

gradually elongated to revert back to the original straight geometry by releasing the stress, 

which is accompanied by the change of the green color at the antinode regions back to blue, 

similar to the color at the nodes. This demonstrates that the buckled parts of the NW were 

under elastic deformation and the deformation-caused local strain and the bandgap variation 

can be controlled reversibly, which is essential for the design of reconfigurable opto-

mechanical-devices.

To understand the origin of the two emission peaks (Peaks 1 and 2 in Fig. 2(d)), we 

performed polarization dependent μ-PL measurements at the antinode region of a wavy NW 

(illustrated in Fig. 4(a)). The two polarization directions, σ and π, are illustrated in Fig. 4(a), 

i.e. light with electric field component (E) perpendicular to the c-axis of wavy nanowire is 

defined as σ-polarized (E⊥c-axis and k⊥c-axis), while light with electric field component 

(E) parallel to the c-axis of the wavy nanowire is defined as π-polarized (E//c-axis and k⊥c-

axis). It is observed that the redshifted emission peak (Peak 2) is predominantly σ-polarized, 

while Peak 1 shows significant π-polarized component (Fig. 4(a)). By using the equation 

 (where ρ is the polarization ratio, I is the intensity of σ- or π-polarized PL peak.), 

the polarization ratio of 78% for Peak 1 and 87% for Peak 2 are obtained. This unique 

polarization behavior implies the different origins for these two peaks.

To further study the properties of the two peaks (Peaks 1 and 2 in Fig. 2(d) and Fig. 4(a)), 

spatially resolved μ-PL mapping along the radial direction of the wavy nanowire was carried 

out (Fig. 4(b)). Although the laser spot size is ~800 nm and detector’s spatial resolution 

~200 nm, by carefully controlling the relative position of the wavy nanowire to the 

excitation laser position, we can collect the light signals from inner surface (under 

compressive strain) to outer surface (tensile strain) gradually. In order to get more intensity 
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variation of Peak 1 as the laser is scanned from the inner to the outer surface, athicker 

nanowire (diameter ~300 nm) is chosen for the spatially-resolved measurement. Although 

the signals cannot be completely resolved from the inner to the outer regions, the relative 

contributions can change upon scanning. It can be seen (Fig. 4(c)) that Peak 1 gradually 

disappears as the excitation spot moves from the inner (compressive) to the outer (tensile) 

surface of the wavy nanowire. These measurements confirm that Peak 1 originates from the 

inner part and is a consequence of compressive strain in the NW. Interestingly, Peak 2 is 

always present with little or no change in intensity as the excitation spot is scanned, which 

can be explained by the exciton diffusion process; as mentioned above, the inhomogeneous 

strain distribution across the cross section would cause a bandgap gradient from the inner to 

the outer surface; excitons excited in the compressively strained region would diffuse to the 

outer surface experiencing tensile strain (lower bandgap). Since the exciton diffusion length 

is typically ~1 μm [34], which is much greater than the typical wire diameters, it is quite 

likely that the excitons can diffuse from the compressively strained to the tensile strained 

region and recombine to generate Peak 2. Thus even if the compressively strained region 

were to be excited solely, the exciton PL from tensile strained part would still be observed.

In CdS, a semiconductor with wurtzite crystal structure, the conduction band is 

predominantly s-like state with Γ7 symmetry, whereas the valence band is p-like state, 

which is split into three bands due to the crystal-field effect and spin-orbit interaction. 

Thomas et al. assigned the three bands as excitons A-Γ9, B-Γ7 and C-Γ7 through reflectance 

and PL measurements [41]. According to the selection rules, all three excitonic transitions 

are allowed for σ-polarization, while in π-polarization, both the B- and C-excitons are still 

allowed but A-exciton is forbidden. Here it is worthy to note that in PL measurements, the 

C-exciton cannot be observed due to its high energy from where the carriers can rapidly 

relax to the lower lying exciton states (A and B), and the B-exciton shows a much stronger 

π-polarized emission than in comparison to σ-polarized. As previously mentioned, Peaks 1 

and 2 display different linear polarizations at the antinode regions of the wavy nanowire 

(Fig. 3(a)). It is safe to assign the strong σ-polarized red shifted Peak 2 to A-exciton 

recombination, while the π-polarized Peak 1 to B-exciton (or C-exciton) recombination 

under compressive strain. The C exciton is typically observed at 2.619 eV at 77 K under 

strain-free conditions, which is much higher than B- (2.560 eV) and A-excitons (2.540 eV) 

[41]. In our data, Peak 1 typically appears in the 2.550 eV to 2.570 eV energy range for all 

measured nanowires. The observed energy uncertainty may be caused by the different 

adhesion force between different nanowires and PDMS substrate (which under cooling can 

lead to slightly different strain conditions) and also due to some temperature variation of the 

PDMS substrate due to its poor thermal conductivity. Regardless, the position of Peak 1 is 

~50 meV lower than the value of the C-exciton in unstrained CdS and considering the fact 

that the compressive strain will further increase the C-exciton energy, the possibility of Peak 

1 originating from C-excitons can be ruled out. Therefore, we assign Peak 1 to B-exciton 

recombination from the compressive strained part of the wavy nanowire.

To further verify the above assignments to the observed PL peaks, we performed μ-R 

measurements to study the exciton states of a single NW. Unlike PL spectroscopy, in which 

the linewidth broadening of emission peaks may cause the free exciton states to become 
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indistinguishable, the reflectance spectra can also provide more insights to determine the 

origin of the spectral feature. In addition, to reveal how strain affects exciton states of the 

NWs on the PDMS substrate, we conducted polarized μ-R and μ-PL spectral measurements 

on the same NW (diameter: ~150 nm) both on Si (with a 300 nm layer of SiO2) and on 

PDMS substrates for direct comparison. Fig. 5(a) (top) shows the polarized reflectance 

spectra of a CdS nanowire on Si substrate at 77 K. Based on the selection rules, A- (2.540 

eV), B- (2.560 eV) and C-exciton states (2.615 eV) can be easily assigned and are almost the 

same as reported in the literature [41]. The corresponding PL data (Fig. 5(a) bottom)) shows 

doublet states for both A- and B-excitons (indicated by red dotted lines for A-exciton and 

blue dotted lines for B-exciton) in reflectance spectra. The doublet spectral features related 

to the B-exciton state are particularly clear in the π-polarized reflectance data. This behavior 

is very similar to the results from bulk CdS with a subsidiary reflectivity spike found around 

the exciton states in the reflectance spectra, which was explained by the theory of surface 

repulsive potential with spatial dispersion of excitons [42]. But this feature was observed to 

exist only until 4.2 K [42], while in our experiments the features are visible even at 77 K. 

We ascribe this phenomenon to the large surface-to-volume ratio of NWs in comparison to 

bulk samples. The surface repulsive potential generated by the reconstruction of the surface 

would play an important role in the optical properties of the nanowire [21]. The detailed 

discussion is beyond the scope of this paper and further experiments are needed to clarify its 

underlying mechanism.

After careful measurements with the NW on SiO2 substrate, the same nanowire is then 

transferred to the PDMS substrate by using the transfer-printing technique; the reflectance 

and the corresponding PL were then obtained at 77 K (Fig. 5(b)). It is clear that the exciton 

features including A- (~2.587 eV), B- (~2.572 eV) and C-exciton (~2.637 eV), shifted to the 

shorter wavelength (blue shift) compared to the results on a Si wafer. This is because the 

PDMS has a high thermal expansion coefficient (~310 ppm/K) [43], which is much larger 

than CdS (~4.6 ppm/K at 300 K to ~ -1.5 ppm/K at 80 K) [44] and therefore the blueshift 

can be explained by the compressive strain that the NW would experience from the 

shrinking of PDMS. Interestingly, the polarized reflectance spectra show that the A-exciton 

blue shifts significantly and crosses over the B-exciton to appear at the higher energy side. 

This suggests that the A-exciton is more sensitive to compressive strain than the B-exciton. 

To confirm this, we performed reflectance and PL measurements on a single NW both on Si 

substrate and on PDMS as a function of temperature (Fig. 5(c) and (d)). The temperature-

dependent reflectance spectra and corresponding PL spectra are also shown in Fig. S-3. 

Increasing the temperature is accompanied with the releasing of compressive strain in the 

CdS NW (due to expansion of the PDMS substrate), and both effects will cause the energy 

redshift of the A- and B-excitons. By accounting for the energy shifts of A- and B-exciton 

on PDMS and the results on Si substrate, we can get the A- and B-exciton shift behavior 

predominantly induced by the compressive strain. It is evident that A-exciton and B-excitons 

move closer to each other with the release of compressive strain (qualitative trends shown in 

Fig. 5 (d)), and is consistent with the results on bulk CdS material [45]. With polarized μ-R 

and μ-PL measurements, strain driven A- and B-exciton energy shifts were comprehensively 

studied. For A-excitons, both the blue shift under compressive strain and red shift under 

tensile strain are very sensitive to the strain condition, while the B-excitons are not too 
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sensitive. The B-exciton thus becomes the lowest state in the ordering of excitons at the 

compressive part of the wavy NW. Thus, the PL intensity of B-excitons will dominate the 

PL spectra just as shown in Fig. 5(b) (bottom), and it is reasonable to assign the π-polarized 

Peak 1 to B-exciton emission.

To summarize, by utilizing a relatively easy approach to fabricate highly strained CdS NWs, 

periodic bandgap modulation along the wavy NW is demonstrated with observed shifts as 

large as 250 meV. By performing polarized μ-PL and μ-R measurements on single NWs, the 

shift behavior of A- and B-exciton as a function of strain has been characterized. Our works 

provides direct insights into the effect of large strains on the optical properties of NWs, 

which can be useful for designing mechanically responsive nanoelectronic or photonic 

systems. Further analysis using time-resolved measurements would shed more detailed 

insights about the carrier dynamics along with direct correlation with the structure of 

strained regions.
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Figure 1. 
(a) Schematic illustration of the process of forming buckled CdS NWs on PDMS substrates 

(b) Large area optical image of buckled NWs. (c) Zoomed in optical image of a single 

buckled CdS NW. (d) Scanning electron microscopy image of a single buckled CdS NW.
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Figure 2. 
(a) The optical image of a single buckled CdS NW with a wavy geometry. The antinodes 

regions (highly strained) of the NW are marked by labels (p1 - p9). (b) Spatially-resolved 

PL data of the buckled NW. Labels (p1-p9) correspond to the antinode parts in (a) at 77 K. 

(c) The corresponding waterfall plots of the PL spectra. (d) Spectra measured at both the 

node and antinode (p4) regions, and a redshift of 200 meV of the emission peak is observed 

(bottom). A reference PL spectrum obtained at 77K of a CdS NW on Si/SiO2 substrate 

(without strain) is shown (top).

Sun et al. Page 10

Nano Lett. Author manuscript; available in PMC 2014 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(a) Dark-field optical image of a single buckled CdS NW. (b) A corresponding real-color 

emission image of the buckled NW obtained with a long pass 488 nm filter at room 

temperature. The periodic color modulation of emission from the buckled (green) to straight 

regions (blue) is observed. (c) By using a strain stage, the curvature of buckled NW is 

gradually reduced by releasing the strain (from top to bottom. This is accompanied by the 

change of the color from the buckled regions from green to blue, implying that the energy 

bandgap shift is caused by the change in the deformation potential.
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Figure 4. 
(a) Polarized PL spectra from the antinode region of a wavy CdS NW at 77 K. Inset 

schematically illustrates the polarization configurations, σ- and π-polarized. (b) Spatially-

resolved PL spectra measured along the cross-section of the NW (diameter, 300 nm) from 

the inner (compressive) to the outer part (tensile) as shown in the inset. It is observed that 

the π-polarized Peak 1 gradually disappears as the excitation laser moves from the 

compressive to the tensile regions of the NW cross-section.
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Figure 5. 
(a) Polarization-resolved reflectance (top) and PL (bottom) spectra of a single CdS NW 

dispersed on a Si substrate (with a 300 nm SiO2 layer) at 77 K. Features corresponding to 

the A-(red dotted lines), B- (blue dotted lines), and C-excitons are clearly observed from the 

reflectance data. (b) Polarization resolved reflectance and PL spectra of the same CdS NW 

transferred from Si to a PDMS substrate. Due to the low temperature induced shrinking of 

PDMS, the NW is strongly compressed by the PDMS substrate. A-, B-, and C-excitons 

show a blueshift, and the A-exciton appears to be more sensitive to strain in comparison to 

the B- and C-excitons. The A-exciton in fact crosses over to the B-exciton and now appears 

at the high energy side. (c) The A- and B-exciton shifts as a function of temperature 

measured with a NW both on PDMS substrate and on Si substrate, respectively. Increasing 

the temperature is accompanied with the release of compressive strain on the CdS NW (due 

to PDMS), and both effects cause the redshift of A- and B-excitons. In order to get the trend 
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of the exciton energy shifts solely induced by the strain, corrections are made to account for 

energy shifts of A- and B-exciton on PDMS and on Si substrate, the results are shown in (d).
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